skip to main content


Search for: All records

Creators/Authors contains: "Jhulki, Samik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles,1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles,12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g–i+, respectively) have been synthesized and reduced with NaBH4to1gH,1hH, and1iH, and with Na:Hg to1g2and1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts.E(1+/1) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducingE(1+/1) values, as well as cathodic shifts inE(12•+/12) andE(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the1Hspecies with PC61BM. Because 2-aryl groups stabilize radicals,1b2and1g2exhibit weaker bonds than1e2and1h2and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a “cleavage-first” pathway, while1e2and1h2react only via “electron-transfer-first”.1h2exhibits the most cathodicE(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers withVIIvia “electron-transfer-first”. Crystal structures show rather long central C–C bonds for1b2(1.5899(11) and 1.6194(8) Å) and1h2(1.6299(13) Å).

     
    more » « less
  2. null (Ed.)
    Chemical doping is a key process for controlling the electronic properties of molecular semiconductors, including their conductivity and work function. A common limitation of n-doped polymers is their instability under ambient conditions, which has imposed restrictions on the characterisation and device application of n-doped polymers. In this study, sequential n-doping with organometallic dopants was performed on thin films of polymeric semiconductors with naphthalene diimide and perylene diimide-based backbones. Moderate ambient stability was achieved with (RuCp*Mes) 2 , {Cp* = pentamethylcyclopentadienyl; Mes = 1,3,5-trimethylbenzene}, which is in striking contrast to the unstable, n-doped state obtained with cobaltocene, a simple one-electron reductant. The highly cathodic, effective redox potential of (RuCp*Mes) 2 , ca. −2.0 V vs. ferrocene, suppresses the back electron transfer reaction and the subsequent dopant loss in air, which gives rise to the observed air stability. It also allows a perylene diimide-based polymer to be reduced to a state in which the repeat units are largely dianionic. Photoelectron measurements show that the ionization potential of the heavily doped polymer is ca. 3.9 eV. Our findings show that chemical doping with (RuCp*Mes) 2 is an effective method to produce highly stable, n-doped conjugated polymers. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    The effects of sequential n-doping on a high-electron-mobility naphthalene-diimide-based copolymer poly[( N , N ′-bis(2-decyltetradecyl)-naphthalene-1,8:4,5-bis(dicarboximide)-2,6-diyl)-(selenophene-2,5-diyl)-(benzo[ c ][1,2,5]thiadiazole-4,7-diyl)-(selenophene-2,5-diyl)], PNBS, are reported. Grazing-incidence XRD measurements show that PNBS doped with 2,2′-bis(4-(dimethylamino)phenyl)-1,1′,3,3′-tetramethyl-2,2′,3,3′-tetrahydro-1 H ,1′ H -2,2′-bibenzo[ d ]imidazole, (N-DMBI) 2 , has increased order relative to both the pristine polymer and a film doped with ruthenium pentamethylcyclopentadienyl mesitylene dimer. Films of PNBS optimally doped with (N-DMBI) 2 show electrical conductivities approaching 2 mS cm −1 in air. Temperature-dependent electrical measurements suggest that the polaronic charge carriers are highly localized, which is consistent with the moderate conductivity values obtained. 
    more » « less
  5. Abstract

    Imine‐linked 2D covalent organic frameworks (COFs) form more rapidly than previously reported under Brønsted acid‐catalyzed conditions, showing signs of crystallinity within a few minutes, and maximum crystallinity within hours. These observations contrast with the multiday reaction times typically employed under these conditions. In addition, vacuum activation, which is often used to isolate COF materials significantly erodes the crystallinity and surface area of the several isolated materials, as measured by N2sorption and X‐ray diffraction. This loss of material quality during isolation for many networks has historically obscured otherwise effective polymerization conditions. The influence of the activation procedure is characterized in detail for three COFs, with the commonly used 1,3,5‐tris(4‐aminophenyl)benzene‐terephthaldehyde network (TAPB‐PDA COF), the most prone to pore collapse. When the networks are activated carefully, rapid COF formation is general for all five of the imine‐linked 2D COFs studied, with all exhibiting excellent crystallinity and surface areas, including the highest surface areas reported to date for three materials. Furthermore, to simplify the workup of COF materials, a simple nitrogen flow method provides high‐quality materials without the need for specialized equipment. These insights have important implications for studying and understanding how 2D COFs form.

     
    more » « less
  6. Abstract

    2D polymers (2DPs) are promising as structurally well‐defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)‐containing 2DP semiconductors is enhanced by controllably n‐doping the NDI units using cobaltocene (CoCp2). Optical and transient microwave spectroscopy reveal that both as‐prepared NDI‐containing 2DPs are semiconducting with sub‐2 eV optical bandgaps and photoexcited charge‐carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2, both 2DPs largely retain their periodic structures and exhibit optical and electron‐spin resonance spectroscopic features consistent with the presence of NDI‐radical anions. While the native NDI‐based 2DPs are electronically insulating, maximum bulk conductivities of >10−4 S cm−1are achieved by substoichiometric levels of n‐doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out‐of‐plane (π‐stacking) crystallographic directions, which indicates that cross‐plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well‐defined, paramagnetic, 2DP n‐type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

     
    more » « less